Bibliografía del libro Historia Climática de la Tierra

A lo largo del libro Historia Climática de la Tierra hice referencia a algunos investigadores y sus estudios publicados en algunas revistas científicas. En esta sección cito estas publicaciones e incorporo otras investigaciones en las cuales se puede profundizar de los temas tratados a lo largo del libro. Hago referencias desde el capítulo 3 puesto que desde ese capítulo realizo referencias y/o abordo temas más específicos. Abajo de la bibliografía se presenta una corrección a la figura 4 del libro.

 

Capítulo 3. El clima del pasado

 Glaciares en Chile

Bown, F., Rivera, A., & Acuña, C. (2008). Recent glacier variations at the Aconcagua basin, central Chilean Andes. Annals of Glaciology, 48, 43-48.

Brüggen, J. (1928). La glaciación actual y cuaternaria de la Cordillera de los Andes.

Rivera, A., Casassa, G., Acuna, C., & Lange, H. (2000). Variaciones recientes de glaciares en Chile. Investigaciones geográficas, (34), ág-29.

 

Historia de la climatología

Fairbridge, R. W. (2008). History of Paleoclimatology, Encyclopedia of paleoclimatology and ancient environments, 414-426, Springer Science & Business Media.

 

Dendroclimatología

Buckley, B. M. (2008). Dating, Dendrochronology, History of Paleoclimatology, Encyclopedia of paleoclimatology and ancient environments, 239-246, Springer Science & Business Media.

Buckley, B. M. (2008). Dendroclimatology, History of Paleoclimatology, Encyclopedia of paleoclimatology and ancient environments, 269-274, Springer Science & Business Media.

Merino, E. G. (2009). La dendrocronología: métodos y aplicaciones. X. Nieto & MA Cau, Arqueología náutica mediterránia, 309-322.

 

Testigos de hielo

Jouzel, J. (2013). A brief history of ice core science over the last 50 yr. Climate of the Past, 9(6), 2525-2547.

Raynaud D. & Parrenin F., Ice Cores, Antarctica and Greenland, History of Paleoclimatology, Encyclopedia of paleoclimatology and ancient environments, 453-456, Springer Science & Business Media.

 

Corales

Veron, J. E. (2008). Corals and Coral Reefs, History of Paleoclimatology, Encyclopedia of paleoclimatology and ancient environments, 198-206, Springer Science & Business Media.

 

 

Capítulo 4. La Tierra Caliente y la regulación térmica

Atmósfera primitiva

Catling, D. C., & Zahnle, K. J. (2020). The archean atmosphere. Science advances, 6(9), eaax1420.

Dauphas, N. (2003). The dual origin of the terrestrial atmosphere. Icarus, 165(2), 326-339.

Kasting, J. F., & Ono, S. (2006). Palaeoclimates: the first two billion years. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470), 917-929.

Pinti, D. L. (2005). The origin and evolution of the oceans. In Lectures in Astrobiology: Volume I (pp. 83-112). Berlin, Heidelberg: Springer Berlin Heidelberg.

 

Paradoja del Sol joven y débil

Goldblatt, C., & Zahnle, K. J. (2011). Faint young Sun paradox remains. Nature, 474(7349), E1-E1.

 

Meteorización y CO2

Kump, L. R., Brantley, S. L., & Arthur, M. A. (2000). Chemical weathering, atmospheric CO2, and climate. Annual Review of Earth and Planetary Sciences, 28(1), 611-667.

 

Capítulo 5. Las primeras glaciaciones

Origen de la vida

Catling, D. C., Glein, C. R., Zahnle, K. J., & McKay, C. P. (2005). Why O2 is required by complex life on habitable planets and the concept of planetary "oxygenation time". Astrobiology, 5(3), 415-438.

Kasting, J. F., & Catling, D. (2003). Evolution of a habitable planet. Annual Review of Astronomy and Astrophysics, 41(1), 429-463.

 

Pongola

Ono, S., Beukes, N. J., Rumble, D., & Fogel, M. L. (2006). Early evolution of atmospheric oxygen from multiple-sulfur and carbon isotope records of the 2.9 Ga Mozaan Group of the Pongola Supergroup, Southern Africa. South African Journal of Geology, 109(1-2), 97-108.

 

Glaciación Huroniana

Hoffman, P. F. (2013). The Great Oxidation and a Siderian snowball Earth: MIF-S based correlation of Paleoproterozoic glacial epochs. Chemical Geology, 362, 143-156.

Kopp, R. E., Kirschvink, J. L., Hilburn, I. A., & Nash, C. Z. (2005). The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proceedings of the National Academy of Sciences, 102(32), 11131-11136.

Tang, H., & Chen, Y. (2013). Global glaciations and atmospheric change at ca. 2.3 Ga. Geoscience Frontiers, 4(5), 583-596.

Wang, Y., Xie, R., Hou, J., Lv, Z., Li, L., Hu, Y., ... & Wang, F. (2022). The late Archaean to early Proterozoic origin and evolution of anaerobic methane‐oxidizing archaea. mLife, 1(1), 96-100.

 

Capítulo 6. Glaciaciones Globales

Glaciaciones globales

Ewing, R. C., Eisenman, I., Lamb, M. P., Poppick, L., Maloof, A. C., & Fischer, W. W. (2014). New constraints on equatorial temperatures during a Late Neoproterozoic snowball Earth glaciation. Earth and Planetary Science Letters, 406, 110-122.

Hoffman, P. F., & Schrag, D. P. (2002). The snowball Earth hypothesis: testing the limits of global change. Terra nova, 14(3), 129-155.

Hoffman, P. F., Kaufman, A. J., Halverson, G. P., & Schrag, D. P. (1998). A Neoproterozoic snowball earth. science, 281(5381), 1342-1346.

Kennedy, M. J., Runnegar, B., Prave, A. R., Hoffmann, K. H., & Arthur, M. A. (1998). Two or four Neoproterozoic glaciations?. Geology, 26(12), 1059-1063.

Kirschvink, J. L. (1992). Late Proterozoic low-latitude global glaciation: the snowball Earth.

Pierrehumbert, R. T., Abbot, D. S., Voigt, A., & Koll, D. (2011). Climate of the Neoproterozoic. Annual Review of Earth and Planetary Sciences, 39, 417-460.

Stern, R. J., & Miller, N. R. (2021). Neoproterozoic Glaciation—Snowball Earth Hypothesis. Encyclopedia Geol.(Second Edition)., 546-556.

 

 

Rodinia

Goddéris, Y., Donnadieu, Y., Dessert, C., Dupré, B., Fluteau, F., François, L. M., ... & Ramstein, G. (2007). Coupled modeling of global carbon cycle and climate in the Neoproterozoic: links between Rodinia breakup and major glaciations. Comptes Rendus Geoscience, 339(3-4), 212-222.

Schrag, D. P., Berner, R. A., Hoffman, P. F., & Halverson, G. P. (2002). On the initiation of a snowball Earth. Geochemistry, Geophysics, Geosystems, 3(6), 1-21.

 

Glaciación Sturtiana

Feulner, G., & Kienert, H. (2014). Climate simulations of Neoproterozoic snowball Earth events: Similar critical carbon dioxide levels for the Sturtian and Marinoan glaciations. Earth and Planetary Science Letters, 404, 200-205.

MacLennan, S. A., Eddy, M. P., Merschat, A. J., Mehra, A. K., Crockford, P. W., Maloof, A. C., ... & Schoene, B. (2020). Geologic evidence for an icehouse Earth before the Sturtian global glaciation. Science Advances, 6(24), eaay6647.

Pierrehumbert, R. T. (2004). High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature, 429(6992), 646-649.

Pu, J. P., Macdonald, F. A., Schmitz, M. D., Rainbird, R. H., Bleeker, W., Peak, B. A., ... & Hamilton, M. A. (2022). Emplacement of the Franklin large igneous province and initiation of the Sturtian Snowball Earth. Science Advances, 8(47), eadc9430.

 

Glaciación Marinoana

Donnadieu, Y., Goddéris, Y., Ramstein, G., Nédélec, A., & Meert, J. (2004). A ‘snowball Earth’climate triggered by continental break-up through changes in runoff. Nature, 428(6980), 303-306.

Fairchild, I. J., & Kennedy, M. J. (2007). Neoproterozoic glaciation in the Earth System. Journal of the Geological Society, 164(5), 895-921.

Huang, K. J., Teng, F. Z., Shen, B., Xiao, S., Lang, X., Ma, H. R., ... & Peng, Y. (2016). Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation. Proceedings of the National Academy of Sciences, 113(52), 14904-14909.

Kennedy, M., Mrofka, D., & Von Der Borch, C. (2008). Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature, 453(7195), 642-645.

Mills, B., Watson, A. J., Goldblatt, C., Boyle, R., & Lenton, T. M. (2011). Timing of Neoproterozoic glaciations linked to transport-limited global weathering. Nature geoscience, 4(12), 861-864.

Prave, A. R., Condon, D. J., Hoffmann, K. H., Tapster, S., & Fallick, A. E. (2016). Duration and nature of the end-Cryogenian (Marinoan) glaciation. Geology, 44(8), 631-634.

 

Segunda Gran Oxidación

Brocks, J. J., Jarrett, A. J., Sirantoine, E., Hallmann, C., Hoshino, Y., & Liyanage, T. (2017). The rise of algae in Cryogenian oceans and the emergence of animals. Nature, 548(7669), 578-581.

 

Glaciación Gaskiers

Retallack, G. J. (2013). Ediacaran Gaskiers glaciation of Newfoundland reconsidered. Journal of the Geological Society, 170(1), 19-36.

Pu, J. P., Bowring, S. A., Ramezani, J., Myrow, P., Raub, T. D., Landing, E., ... & Macdonald, F. A. (2016). Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology, 44(11), 955-958.

Youbi, N., Ernst, R. E., Söderlund, U., Boumehdi, M. A., Lahna, A. A., Tassinari, C. C. G., ... & Bensalah, M. K. (2020). The Central Iapetus magmatic province: An updated review and link with the ca. 580 Ma Gaskiers glaciation.

 

Glaciación Baykoruniana

Chumakov, N. M. (2009). The Baykonurian glaciohorizon of the late Vendian. Stratigraphy and Geological Correlation, 17, 373-381.

 

Capítulo 7. Los enigmas de la Era de Hielo Andina-Sahariana

Clima cámbrico

 

Babcock, L. E., Peng, S. C., Brett, C. E., Zhu, M. Y., Ahlberg, P., Bevis, M., & Robison, R. A. (2015). Global climate, sea level cycles, and biotic events in the Cambrian Period. Palaeoworld, 24(1-2), 5-15.

Boucot, A. J., Xu, C., Scotese, C. R., & Morley, R. J. (2013). Phanerozoic paleoclimate: an atlas of lithologic indicators of climate (Vol. 11). Tulsa, OK: SEPM (Society for Sedimentary Geology).

Hearing, T. W., Harvey, T. H., Williams, M., Leng, M. J., Lamb, A. L., Wilby, P. R., ... & Donnadieu, Y. (2018). An early Cambrian greenhouse climate. Science advances, 4(5), eaar5690.

Mills, B. J., Scotese, C. R., Walding, N. G., Shields, G. A., & Lenton, T. M. (2017). Elevated CO2 degassing rates prevented the return of Snowball Earth during the Phanerozoic. Nature communications, 8(1), 1110.

 

Extinción del Ordovícico

Bond, D. P., & Grasby, S. E. (2020). Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation. Geology, 48(8), 777-781.

Finnegan, S., Heim, N. A., Peters, S. E., & Fischer, W. W. (2012). Climate change and the selective signature of the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences, 109(18), 6829-6834.

Ghienne, J. F., Desrochers, A., Vandenbroucke, T. R., Achab, A., Asselin, E., Dabard, M. P., ... & Veizer, J. (2014). A Cenozoic-style scenario for the end-Ordovician glaciation. Nature Communications, 5(1), 4485.

Harper, D. A., Hammarlund, E. U., & Rasmussen, C. M. (2014). End Ordovician extinctions: a coincidence of causes. Gondwana Research, 25(4), 1294-1307.

Sheehan, P. M. (2001). The late Ordovician mass extinction. Annual Review of Earth and Planetary Sciences, 29(1), 331 Harper, D. A., Hammarlund, E. U., & Rasmussen, C. M. (2014).

 

Anoxia

Bartlett, R., Elrick, M., Wheeley, J. R., Polyak, V., Desrochers, A., & Asmerom, Y. (2018). Abrupt global-ocean anoxia during the Late Ordovician–early Silurian detected using uranium isotopes of marine carbonates. Proceedings of the National Academy of Sciences, 115(23), 5896-5901.

Li, C., Huang, J., Ding, L., Liu, X., Yu, H., & Huang, J. (2020). Increasing escape of oxygen from oceans under climate change. Geophysical Research Letters, 47(11), e2019GL086345.

 

Glaciación Andina-Sahariana

Brenchley, P. J., Marshall, J. D., Carden, G. A. F., Robertson, D. B. R., Long, D. G. F., Meidla, T., ... & Anderson, T. F. (1994). Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology, 22(4), 295-298.

Finnegan, S., Bergmann, K., Eiler, J. M., Jones, D. S., Fike, D. A., Eisenman, I., ... & Fischer, W. W. (2011). The magnitude and duration of Late Ordovician–Early Silurian glaciation. Science, 331(6019), 903-906.

Finnegan, S., Bergmann, K., Eiler, J. M., Jones, D. S., Fike, D. A., Eisenman, I., ... & Fischer, W. W. (2011). The magnitude and duration of Late Ordovician–Early Silurian glaciation. Science, 331(6019), 903-906.

McKenzie, N. R., Hughes, N. C., Gill, B. C., & Myrow, P. M. (2014). Plate tectonic influences on Neoproterozoic–early Paleozoic climate and animal evolution. Geology, 42(2), 127-130.

Nardin, E., Goddéris, Y., Donnadieu, Y., Hir, G. L., Blakey, R. C., Pucéat, E., & Aretz, M. (2011). Modeling the early Paleozoic long-term climatic trend. Bulletin, 123(5-6), 1181-1192.

Poussart, P. F., Weaver, A. J., & Barnes, C. R. (1999). Late Ordovician glaciation under high atmospheric CO2: A coupled model analysis. Paleoceanography, 14(4), 542-558.

 

Capítulo 8. Las plantas y la Era de Hielo Karoo

Relación CO2 y temperatura

Franks, P. J., Royer, D. L., Beerling, D. J., Van de Water, P. K., Cantrill, D. J., Barbour, M. M., & Berry, J. A. (2014). New constraints on atmospheric CO2 concentration for the Phanerozoic. Geophysical Research Letters, 41(13), 4685-4694.

Goddéris, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V., & Nardin, E. (2014). The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth-Science Reviews, 128, 122-138.

Nance, R. D. (2022). The supercontinent cycle and Earth's long‐term climate. Annals of the New York Academy of Sciences, 1515(1), 33-49.

Royer, D. L., Berner, R. A., Montañez, I. P., Tabor, N. J., & Beerling, D. J. (2004). Co~ 2 as a primary driver of phanerozoic climate. GSA today, 14(3), 4-10.

Royer, D. L. (2006). CO2-forced climate thresholds during the Phanerozoic. Geochimica et Cosmochimica Acta, 70(23), 5665-5675.

 

El origen de las plantas y el clima

Beerling, D. J., & Berner, R. A. (2005). Feedbacks and the coevolution of plants and atmospheric CO2. Proceedings of the National Academy of Sciences, 102(5), 1302-1305

Berner, R. A. (1997). The rise of plants and their effect on weathering and atmospheric CO2. Science, 276(5312), 544-546.

Guillaume Le Hir, Yannick Donnadieu, Yves Goddéris, Brigitte Meyer-Berthaud, Gilles Ramstein, Ronald C. Blakey, The climate change caused by the land plant invasion in the Devonian, Earth and Planetary Science Letters, Volume 310, Issues 3–4, 2011, Pages 203-212, ISSN 0012-821X

Tais W. Dahl, Susanne K.M. Arens, The impacts of land plant evolution on Earth's climate and oxygenation state – An interdisciplinary review, Chemical Geology, Volume 547, 2020, 119665, ISSN 0009-2541

 

Glaciación Karoo

Caputo, M. V., de Melo, J. H. G., Streel, M., Isbell, J. L., & Fielding, C. R. (2008). Late Devonian and early Carboniferous glacial records of South America. Geological Society of America Special Papers, 441, 161-173.

Fielding, C. R., Frank, T. D., & Isbell, J. L. (2008). The late Paleozoic ice age—A review of current understanding and synthesis of global climate patterns. Resolving the late Paleozoic ice age in time and space, 441, 343-354.

Frakes, L. A., & Crowell, J. C. (1969). Late Paleozoic glaciation: I, South America. Geological Society of America Bulletin, 80(6), 1007-1042.

Isbell, J. L., Henry, L. C., Gulbranson, E. L., Limarino, C. O., Fraiser, M. L., Koch, Z. J., ... & Dineen, A. A. (2012). Glacial paradoxes during the late Paleozoic ice age: Evaluating the equilibrium line altitude as a control on glaciation. Gondwana Research, 22(1), 1-19.

Kent, D. V., & Muttoni, G. (2020). Pangea B and the Late Paleozoic ice age. Palaeogeography, Palaeoclimatology, Palaeoecology, 553, 109753.

Montañez, I. P., Tabor, N. J., Niemeier, D., DiMichele, W. A., Frank, T. D., Fielding, C. R., ... & Rygel, M. C. (2007). CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science, 315(5808), 87-91.

Qie, W., Algeo, T. J., Luo, G., & Herrmann, A. (2019). Global events of the late Paleozoic (early Devonian to Middle Permian): a review. Palaeogeography, Palaeoclimatology, Palaeoecology, 531, 109259.

Soreghan, G. S., Soreghan, M. J., & Heavens, N. G. (2019). Explosive volcanism as a key driver of the late Paleozoic ice age. Geology, 47(7), 600-604.

 

Oxígeno y lignina

Dahl, T. W., & Arens, S. K. (2020). The impacts of land plant evolution on Earth's climate and oxygenation state–An interdisciplinary review. Chemical Geology, 547, 119665.

Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R. A., Henrissat, B., ... & Hibbett, D. S. (2012). The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science, 336(6089), 1715-1719.

Montañez, I. P., & Poulsen, C. J. (2013). The Late Paleozoic ice age: an evolving paradigm. Annual Review of Earth and Planetary Sciences, 41, 629-656.

 

Capítulo 9. Cambios climáticos y volcanes

Gran Mortandad

Erwin, D. H. (1994). The Permo–Triassic extinction. Nature, 367(6460), 231-236.

Grasby, S. E., Sanei, H., & Beauchamp, B. (2011). Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geoscience, 4(2), 104-107.

Joachimski, M. M., Lai, X., Shen, S., Jiang, H., Luo, G., Chen, B., ... & Sun, Y. (2012). Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology, 40(3), 195-198.

Penn, J. L., Deutsch, C., Payne, J. L., & Sperling, E. A. (2018). Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science, 362(6419), eaat1327.

Tang, Q., Zhang, M., Li, C., Yu, M., & Li, L. (2013). The chemical compositions and abundances of volatiles in the Siberian large igneous province: Constraints on magmatic CO2 and SO2 emissions into the atmosphere. Chemical Geology, 339, 84-91.

 

Capítulo 10. Los monzones y el diluvio de Pangea

Clima del Triásico

 

Boucot, A. J., Xu, C., Scotese, C. R., & Morley, R. J. (2013). Phanerozoic paleoclimate: an atlas of lithologic indicators of climate (Vol. 11). Tulsa, OK: SEPM (Society for Sedimentary Geology).

Preto, N., Kustatscher, E., & Wignall, P. B. (2010). Triassic climates—state of the art and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1-4), 1-10.

Trotter, J. A., Williams, I. S., Nicora, A., Mazza, M., & Rigo, M. (2015). Long-term cycles of Triassic climate change: a new δ18O record from conodont apatite. Earth and Planetary Science Letters, 415, 165-174.

 

Evento pluvial del Carniense

Benton, M. J., Bernardi, M., & Kinsella, C. (2018). The Carnian Pluvial Episode and the origin of dinosaurs. Journal of the Geological Society, 175(6), 1019-1026.

Bernardi, M., Gianolla, P., Petti, F. M., Mietto, P., & Benton, M. J. (2018). Dinosaur diversification linked with the Carnian Pluvial Episode. Nature Communications, 9(1), 1499.

Sun, Y. D., Wignall, P. B., Joachimski, M. M., Bond, D. P., Grasby, S. E., Lai, X. L., ... & Sun, S. (2016). Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China. Eart Schaller, M. F., Wright, J. D., & Kent, D. V. (2011). Atmospheric p CO2.

 

Capítulo 11. Glaciares en el Jurásico

Clima del Jurásico

Bodin, S., Mau, M., Sadki, D., Danisch, J., Nutz, A., Krencker, F. N., & Kabiri, L. (2020). Transient and secular changes in global carbon cycling during the early Bajocian event: Evidence for Jurassic cool climate episodes. Global and Planetary Change, 194, 103287.

Boucot, A. J., Xu, C., Scotese, C. R., & Morley, R. J. (2013). Phanerozoic paleoclimate: an atlas of lithologic indicators of climate (Vol. 11). Tulsa, OK: SEPM (Society for Sedimentary Geology).

Korte, C., Hesselbo, S. P., Ullmann, C. V., Dietl, G., Ruhl, M., Schweigert, G., & Thibault, N. (2015). Jurassic climate mode governed by ocean gateway. Nature communications, 6(1), 10015.

Krencker, F. N., Lindström, S., & Bodin, S. (2019). A major sea-level drop briefly precedes the Toarcian oceanic anoxic event: implication for Early Jurassic climate and carbon cycle. Scientific Reports, 9(1), 1-12.

Nordt, L., Breecker, D., & White, J. (2022). Jurassic greenhouse ice-sheet fluctuations sensitive to atmospheric CO2 dynamics. Nature Geoscience, 15(1), 54-59.

Price, G. D. (1999). The evidence and implications of polar ice during the Mesozoic. Earth-Science Reviews, 48(3), 183-210.

Schaller, M. F., Wright, J. D., & Kent, D. V. (2011). Atmospheric p CO2 perturbations associated with the Central Atlantic Magmatic Province. science, 331(6023), 1404-1409.

 

Evento del Toarciano

Gill, B. C., Lyons, T. W., & Jenkyns, H. C. (2011). A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event. Earth and Planetary Science Letters, 312(3-4), 484-496.

Hesselbo, S. P., Gröcke, D. R., Jenkyns, H. C., Bjerrum, C. J., Farrimond, P., Morgans Bell, H. S., & Green, O. R. (2000). Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature, 406(6794), 392-395.

Them, T. R., Gill, B. C., Selby, D., Gröcke, D. R., Friedman, R. M., & Owens, J. D. (2017). Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event. Scientific reports, 7(1), 5003.

van de Schootbrugge, B., McArthur, J. M., Bailey, T. R., Rosenthal, Y., Wright, J. D., & Miller, K. G. (2005). Toarcian oceanic anoxic event: An assessment of global causes using belemnite C isotope records. Paleoceanography, 20(3).

 

 

Capítulo 12. El superinvernadero

Clima del Cretácico

Bata, T. (2016). Evidences of widespread Cretaceous deep weathering and its consequences: A review. Earth Science Research, 5(2), 69.

Boucot, A. J., Xu, C., Scotese, C. R., & Morley, R. J. (2013). Phanerozoic paleoclimate: an atlas of lithologic indicators of climate (Vol. 11). Tulsa, OK: SEPM (Society for Sedimentary Geology).

Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., & Deconinck, J. F. (2016). A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration. Nature Communications, 7(1), 10316.

Hay, W. W., DeConto, R. M., de Boer, P., Flögel, S., Song, Y., & Stepashko, A. (2019). Possible solutions to several enigmas of Cretaceous climate. International Journal of Earth Sciences, 108, 587-620.

Huber, B. T., MacLeod, K. G., Watkins, D. K., & Coffin, M. F. (2018). The rise and fall of the Cretaceous Hot Greenhouse climate. Global and Planetary Change, 167, 1-23.

Kauffman E. G. & Johnson C. C. (2008). Cretaceous Warm Climates, History of Paleoclimatology, Encyclopedia of paleoclimatology and ancient environments, 213-216, Springer Science & Business Media.

Milligan, J. N., Royer, D. L., Franks, P. J., Upchurch, G. R., & McKee, M. L. (2019). No evidence for a large atmospheric CO2 spike across the Cretaceous‐Paleogene boundary. Geophysical Research Letters, 46(6), 3462-3472.

Nelson, D. A., Cottle, J. M., Bindeman, I. N., & Camacho, A. (2022). Ultra-depleted hydrogen isotopes in hydrated glass record Late Cretaceous glaciation in Antarctica. Nature Communications, 13(1), 5209.

Pagani, M., Huber, M., & Sageman, B. (2014). 6.13–Greenhouse Climates. Treatise Geochem, 37, 281-304.

Zhang, M., Dai, S., Du, B., Ji, L., & Hu, S. (2018). Mid‐Cretaceous hothouse climate and the expansion of early angiosperms. Acta Geologica Sinica‐English Edition, 92(5), 2004-2025.

 

Eventos anóxicos

Baker, S. J., Belcher, C. M., Barclay, R. S., Hesselbo, S. P., Laurin, J., & Sageman, B. B. (2020). CO2-induced climate forcing on the fire record during the initiation of Cretaceous oceanic anoxic event 2. GSA Bulletin, 132(1-2), 321-333.

Matsumoto, H., Coccioni, R., Frontalini, F., Shirai, K., Jovane, L., Trindade, R., ... & Kuroda, J. (2022). Mid-Cretaceous marine Os isotope evidence for heterogeneous cause of oceanic anoxic events. Nature communications, 13(1), 239.

 

 

Capítulo 13. La extinción de los dinosaurios

Límite del Cretácico – Paleógeno

Hull, P. M., Bornemann, A., Penman, D. E., Henehan, M. J., Norris, R. D., Wilson, P. A., ... & Zachos, J. C. (2020). On impact and volcanism across the Cretaceous-Paleogene boundary. Science, 367(6475), 266-272.

Pierazzo E. (2008). Cretaceous/Tertiary (K-T) Boundary Impact, Climate Effects, History of Paleoclimatology, Encyclopedia of paleoclimatology and ancient environments, 217-220, Springer Science & Business Media.

Sprain, C. J., Renne, P. R., Vanderkluysen, L., Pande, K., Self, S., & Mittal, T. (2019). The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science, 363(6429), 866-870.

 

Capítulo 14. Máximos térmicos

Hipertermales

Giorgioni, M., Jovane, L., Rego, E. S., Rodelli, D., Frontalini, F., Coccioni, R., ... & Özcan, E. (2019). Carbon cycle instability and orbital forcing during the Middle Eocene Climatic Optimum. Scientific Reports, 9(1), 9357.

Harper, D. T., Hönisch, B., Zeebe, R. E., Shaffer, G., Haynes, L. L., Thomas, E., & Zachos, J. C. (2020). The magnitude of surface ocean acidification and carbon release during Eocene Thermal Maximum 2 (ETM‐2) and the Paleocene‐Eocene Thermal Maximum (PETM). Paleoceanography and Paleoclimatology, 35(2), e2019PA003699.

He, T., Kemp, D. B., Li, J., & Ruhl, M. (2023). Paleoenvironmental changes across the Mesozoic–Paleogene hyperthermal events. Global and Planetary Change, 104058.

Inglis, G. N., Bragg, F., Burls, N. J., Cramwinckel, M. J., Evans, D., Foster, G. L., ... & Pancost, R. D. (2020). Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene. Climate of the Past, 16(5), 1953-1968.

Jones, S. M., Hoggett, M., Greene, S. E., & Dunkley Jones, T. (2019). Large Igneous Province thermogenic greenhouse gas flux could have initiated Paleocene-Eocene Thermal Maximum climate change. Nature Communications, 10(1), 5547.

Keery, J. S., Holden, P. B., & Edwards, N. R. (2018). Sensitivity of the Eocene climate to CO 2 and orbital variability. Climate of the Past, 14(2), 215-238.

Korasidis, V. A., Wing, S. L., Shields, C. A., & Kiehl, J. T. (2022). Global Changes in Terrestrial Vegetation and Continental Climate During the Paleocene‐Eocene Thermal Maximum. Paleoceanography and Paleoclimatology, 37(4), e2021PA004325.

Lourens, L. J., Sluijs, A., Kroon, D., Zachos, J. C., Thomas, E., Röhl, U., ... & Raffi, I. (2005). Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature, 435(7045), 1083-1087.

Piedrahita, V. A., Galeotti, S., Zhao, X., Roberts, A. P., Rohling, E. J., Heslop, D., ... & Zeebe, R. E. (2022). Orbital phasing of the Paleocene-Eocene Thermal Maximum. Earth and Planetary Science Letters, 598, 117839.

Sternai, P., Caricchi, L., Pasquero, C., Garzanti, E., van Hinsbergen, D. J., & Castelltort, S. (2020). Magmatic forcing of Cenozoic climate?. Journal of Geophysical Research: Solid Earth, 125(1), e2018JB016460.

Stokke, E. W., Jones, M. T., Tierney, J. E., Svensen, H. H., & Whiteside, J. H. (2020). Temperature changes across the Paleocene-Eocene Thermal Maximum–a new high-resolution TEX86 temperature record from the Eastern North Sea Basin. Earth and Planetary Science Letters, 544, 116388.

Zeebe, R. E., Westerhold, T., Littler, K., & Zachos, J. C. (2017). Orbital forcing of the Paleocene and Eocene carbon cycle. Paleoceanography, 32(5), 440-465.

 

Capítulo 15. Enfriamiento Global

CO2 y Temperatura en el Cenozoico

Sternai, P., Caricchi, L., Pasquero, C., Garzanti, E., van Hinsbergen, D. J., & Castelltort, S. (2020). Magmatic forcing of Cenozoic climate?. Journal of Geophysical Research: Solid Earth, 125(1), e2018JB016460.

 

Orogénesis y enfriamiento global del Cenozoico

Garzione, C. N. (2008). Surface uplift of Tibet and Cenozoic global cooling. Geology, 36(12), 1003-1004.

Raymo, M. E., & Ruddiman, W. F. (1992). Tectonic forcing of late Cenozoic climate. Nature, 359(6391), 117-122.

Ruddiman, W. F. (2001). Chapter 6. From Greenhouse to Icehouse: The Last 50 Million Years, Earth's climate: past and future. Macmillan.

Willenbring, J. K., & Von Blanckenburg, F. (2010). Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature, 465(7295), 211-214.

 

Glaciación de la Antártida

Barker, P. F., Filippelli, G. M., Florindo, F., Martin, E. E., & Scher, H. D. (2007). Onset and role of the Antarctic Circumpolar Current. Deep Sea Research Part II: Topical Studies in Oceanography, 54(21-22), 2388-2398.

Barker, P. F., & Thomas, E. (2004). Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth-Science Reviews, 66(1-2), 143-162.

Carter, A., Riley, T. R., Hillenbrand, C. D., & Rittner, M. (2017). Widespread Antarctic glaciation during the late Eocene. Earth and Planetary Science Letters, 458, 49-57.

DeConto, R. M., Pollard, D., Wilson, P. A., Pälike, H., Lear, C. H., & Pagani, M. (2008). Thresholds for Cenozoic bipolar glaciation. Nature, 455(7213), 652-656.

DeConto, R. M., & Pollard, D. (2003). Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421(6920), 245-249.

Goldner, A., Herold, N., & Huber, M. (2014). Antarctic glaciation caused ocean circulation changes at the Eocene–Oligocene transition. Nature, 511(7511), 574-577.

Goldner, A., Huber, M., & Caballero, R. (2013). Does Antarctic glaciation cool the world?. Climate of the Past, 9(1), 173-189.

Kennedy, A. T., Farnsworth, A., Lunt, D. J., Lear, C. H., & Markwick, P. J. (2015). Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene–Oligocene transition. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2054), 20140419.

Pagani, M., Huber, M., Liu, Z., Bohaty, S. M., Henderiks, J., Sijp, W., ... & DeConto, R. M. (2011). The role of carbon dioxide during the onset of Antarctic glaciation. science, 334(6060), 1261-1264.

 

Clima del Mioceno

Beerling, D., Berner, R. A., Mackenzie, F. T., Harfoot, M. B., & Pyle, J. A. (2009). Methane and the CH4 related greenhouse effect over the past 400 million years. American Journal of Science, 309(2), 97-113.

Boucot, A. J., Xu, C., Scotese, C. R., & Morley, R. J. (2013). Phanerozoic paleoclimate: an atlas of lithologic indicators of climate (Vol. 11). Tulsa, OK: SEPM (Society for Sedimentary Geology).

Sperry, J. S., Venturas, M. D., Todd, H. N., Trugman, A. T., Anderegg, W. R., Wang, Y., & Tai, X. (2019). The impact of rising CO2 and acclimation on the response of US forests to global warming. Proceedings of the National Academy of Sciences, 116(51), 25734-25744

Goldner, A., Herold, N., & Huber, M. (2014). The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1. Climate of the Past, 10(2), 523-536.

Knorr, G., & Lohmann, G. (2014). Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition. Nature Geoscience, 7(5), 376-381.

Longman, J., Mills, B. J., Donnadieu, Y., & Goddéris, Y. (2022). Assessing volcanic controls on Miocene climate change. Geophysical Research Letters, 49(2), e2021GL096519.

Sperry, J. S., Venturas, M. D., Todd, H. N., Trugman, A. T., Anderegg, W. R., Wang, Y., & Tai, X. (2019). The impact of rising CO2 and acclimation on the response of US forests to global warming. Proceedings of the National Academy of Sciences, 116(51), 25734-25744

 

Reglaciación de la Antártida

Colleoni, F., De Santis, L., Montoli, E., Olivo, E., Sorlien, C. C., Bart, P. J., ... & Prato, S. (2018). Past continental shelf evolution increased Antarctic ice sheet sensitivity to climatic conditions. Scientific reports, 8(1), 1-12.

Holbourn, A., Kuhnt, W., Lyle, M., Schneider, L., Romero, O., & Andersen, N. (2014). Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology, 42(1), 19-22.

Leutert, T. J., Auderset, A., Martínez-García, A., Modestou, S., & Meckler, A. N. (2020). Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene. Nature Geoscience, 13(9), 634-639.

 

Capítulo 17. El clima del futuro en el pasado

Clima del Plioceno

Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J., & Otto-Bliesner, B. L. (2018). Pliocene and Eocene provide best analogs for near-future climates. Proceedings of the National Academy of Sciences, 115(52), 13288-13293.

Dowsett, H. J., & Caballero Gill, R. P. (2010). Pliocene climate. Stratigraphy, 7(2-3), 106-110.

Hansen, J., Sato, M., Russell, G., & Kharecha, P. (2013). Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(2001), 20120294.

Haywood, A. M., & Johnson, A. L. The climate and environment of a Pliocene warm world.

Robinson, M. M., Dowsett, H. J., & Chandler, M. A. (2008). Pliocene role in assessing future climate impacts. Eos, Transactions American Geophysical Union, 89(49), 501-502.

 

El Niño del Plioceno

Scroxton, N., Bonham, S. G., Rickaby, R. E., Lawrence, S. H. F., Hermoso, M., & Haywood, A. M. (2011). Persistent el Niño–southern oscillation variation during the Pliocene epoch. Paleoceanography, 26(2).

 

Hielos en el Ártico

Driscoll, N. W., & Haug, G. H. (1998). A short circuit in thermohaline circulation: A cause for northern hemisphere glaciation?. Science, 282(5388), 436-438.

Klocker, A., Prange, M., & Schulz, M. (2005). Testing the influence of the Central American Seaway on orbitally forced Northern Hemisphere glaciation. Geophysical Research Letters, 32(3).

Lunt, D. J., Foster, G. L., Haywood, A. M., & Stone, E. J. (2008). Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature, 454(7208), 1102-1105.

 

Capítulo 18. Los ciclos glaciales y la glaciación Cuaternaria

Periodos glaciales

Blunier, T., & Brook, E. J. (2001). Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. science, 291(5501), 109-112.

Brook, E. (2008). Windows on the greenhouse. Nature, 453(7193), 291-292.

Hughes, P. D., & Gibbard, P. L. (2018). Global glacier dynamics during 100 ka Pleistocene glacial cycles. Quaternary Research, 90(1), 222-243.

Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J. M., Siegenthaler, U., ... & Stocker, T. F. (2008). High-resolution carbon dioxide concentration record 650,000–800,000 years before present. nature, 453(7193), 379-382.

Ruddiman, W. F. (2003). Orbital insolation, ice volumen, and greenhouse gases. Quaternary Science Reviews, 22(15-17), 1597-1629.

 

Estadiales

Railsback, L. B., Gibbard, P. L., Head, M. J., Voarintsoa, N. R. G., & Toucanne, S. (2015). An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews, 111, 94-106.

 

Capítulo 19. Variaciones orbitales

Control astronómico del clima

Dimitrijević, M. S. (2020). Milutin Milanković and climate changes leading to ice ages. ChemTexts, 6, 1-8.

Hansen, J., Sato, M., Russell, G., & Kharecha, P. (2013). Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(2001), 20120294.

Huybers, P. (2011). Combined obliquity and precession pacing of late Pleistocene deglaciations. Nature, 480(7376), 229-232.

Ruddiman, W. F. (2001). Chapter 7. Astronomical Control of Solar Radiation, Earth's climate: past and future. Macmillan.

Tzedakis, P. C., Crucifix, M., Mitsui, T., & Wolff, E. W. (2017). A simple rule to determine which insolation cycles lead to interglacials. Nature, 542(7642), 427-432.

 

Capítulo 20. La Edad de Hielo y el ser humano

Homo sapiens

Richter, D., Grün, R., Joannes-Boyau, R., Steele, T. E., Amani, F., Rué, M., ... & McPherron, S. P. (2017). The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age. Nature, 546(7657), 293-296.

Scholz, C. A., Johnson, T. C., Cohen, A. S., King, J. W., Peck, J. A., Overpeck, J. T., ... & Pierson, J. (2007). East African megadroughts between 135 and 75 thousand years ago and bearing on early-modern human origins. Proceedings of the National Academy of Sciences, 104(42), 16416-16421.

Shakun, J. D., & Carlson, A. E. (2010). A global perspective on Last Glacial Maximum to Holocene climate change. Quaternary Science Reviews, 29(15-16), 1801-1816.

Stringer, C. (2016). The origin and evolution of Homo sapiens. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1698), 20150237.

 

Último periodo glacial

Ai, X. E., Studer, A. S., Sigman, D. M., Martínez-García, A., Fripiat, F., Thöle, L. M., ... & Haug, G. H. (2020). Southern Ocean upwelling, Earth’s obliquity, and glacial-interglacial atmospheric CO2 change. Science, 370(6522), 1348-1352.

Bowen D. Q. (2008). Last Glacial Maximum, Encyclopedia of paleoclimatology and ancient environments, 493-493, Springer Science & Business Media.

Clement, A. C., & Peterson, L. C. (2008). Mechanisms of abrupt climate change of the last glacial period. Reviews of Geophysics, 46(4).

Denton, G. H., Anderson, R. F., Toggweiler, J. R., Edwards, R. L., Schaefer, J. M., & Putnam, A. E. (2010). The last glacial termination. science, 328(5986), 1652-1656.

García, J. L., Hein, A. S., Binnie, S. A., Gómez, G. A., González, M. A., & Dunai, T. J. (2018). The MIS 3 maximum of the Torres del Paine and Última Esperanza ice lobes in Patagonia and the pacing of southern mountain glaciation. Quaternary Science Reviews, 185, 9-26.

Hughes, P. D., Gibbard, P. L., & Ehlers, J. (2013). Timing of glaciation during the last glacial cycle: evaluating the concept of a global ‘Last Glacial Maximum’(LGM). Earth-Science Reviews, 125, 171-198.

Kohfeld, K. E., & Chase, Z. (2017). Temporal evolution of mechanisms controlling ocean carbon uptake during the last glacial cycle. Earth and Planetary Science Letters, 472, 206-215.

 

Uriarte, A. (2003). Capítulo 8. Variabilidad climática durante la Ultima Glaciación. Historia del Clima de la Tierra. Gobierno Vasco.

 

Capítulo 21. Salares y el periodo húmedo africano

Clima del Holoceno

Masson, V., Vimeux, F., Jouzel, J., Morgan, V., Delmotte, M., Ciais, P., ... & Vaikmae, R. (2000). Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quaternary Research, 54(3), 348-358.

Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlén, W., Maasch, K. A., Meeker, L. D., ... & Steig, E. J. (2004). Holocene climate variability. Quaternary research, 62(3), 243-255.

Roberts N. Bowen D. Q. (2008). Holocene Climates, Encyclopedia of paleoclimatology and ancient environments, 438-441, Springer Science & Business Media.

Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., ... & Widmann, M. (2008). Mid-to Late Holocene climate change: an overview. Quaternary Science Reviews, 27(19-20), 1791-1828.

 

Periodo Húmedo Africano

Demenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., & Yarusinsky, M. (2000). Abrupt onset and termination of the African Humid Period:: rapid climate responses to gradual insolation forcing. Quaternary science reviews, 19(1-5), 347-361.

Manning, K., & Timpson, A. (2014). The demographic response to Holocene climate change in the Sahara. Quaternary Science Reviews, 101, 28-35.

Shanahan, T. M., McKay, N. P., Hughen, K. A., Overpeck, J. T., Otto-Bliesner, B., Heil, C. W., ... & Peck, J. (2015). The time-transgressive termination of the African Humid Period. Nature Geoscience8(2), 140-144.

 

Capítulo 22. La pequeña edad de hielo

Pequeña edad de hielo

Crowley, T. J., Zielinski, G., Vinther, B., Udisti, R., Kreutz, K., Cole-Dai, J., & Castellano, E. (2008). Volcanism and the little ice age. PAGES news, 16(2), 22-23.

Mann, M. E. (2002). Little ice age. Encyclopedia of global environmental change, 1(504), e509.

Matthews, J. A., & Briffa, K. R. (2005). The ‘Little Ice Age’: re‐evaluation of an evolving concept. Geografiska Annaler: Series A, Physical Geography, 87(1), 17-36.

 

Hipótesis de la influencia antropogénica temprana

Ruddiman, W. F. (2010). Plows, plagues, and petroleum. In Plows, Plagues, and Petroleum. Princeton University Press.

 

Capítulo 23. Cambio climático Antropogénico

Calentamiento global

Boisier Echeñique, J. P., Rondanelli Rojas, R., Garreaud Salazar, R., & Muñoz, F. (2016). Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile.

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, doi:10.1017/9781009157896.

Ruddiman, W. F., Fuller, D. Q., Kutzbach, J. E., Tzedakis, P. C., Kaplan, J. O., Ellis, E. C., ... & Woodbridge, J. (2016). Late Holocene climate: Natural or anthropogenic?. Reviews of Geophysics, 54(1), 93-118.

 

Epílogo

Próxima glaciación

Archer, D., & Ganopolski, A. (2005). A movable trigger: Fossil fuel CO2 and the onset of the next glaciation. Geochemistry, Geophysics, Geosystems, 6(5).

Ganopolski, A., Winkelmann, R., & Schellnhuber, H. J. (2016). Critical insolation–CO2 relation for diagnosing past and future glacial inception. Nature, 529(7585), 200-203.

Herrero, C., García-Olivares, A., & Pelegrí, J. L. (2014). Impact of anthropogenic CO 2 on the next glacial cycle. Climatic change, 122, 283-298.




Comentarios

Entradas más populares de este blog

8. ¿Qué es la constante solar?

¿Qué es la retroalimentación del gradiente vertical de temperatura?